AD-R174 991

UNCLASSIFIED




PRI TENY T

Approved for publie release *
distridution unlimited,

INTERIM PROGRESS REPORT

. B =

(2]
" " AFOSR-TR. 86-2180 EEEEnza
s oin ~
W T g O
ANALYTICAL AND EXPERIMENTAL MR
@ CHARACTERIZATION OF DAMAGE PROCESSES Fofpgmd
& ata
IN COMPOSITE LAMINATES Egesegn
® FUEES LY
N — =) -
3 e EFaif,
H e
bt ® ® 5 T g
F - B u
E 8 °cgs
by g E3C
- = - -1
% ¥ 53 09
P, o o t; %)
George J, Dvorak B wa&
‘ Department of Civil Engineering P Ry
i Rensselaer Polytechnic Institute 5";5’ -
Troy, NY 12180 ol

2% sa
’
« 4

and

»
-

734

Norman Laws
Department of Mechanical Engineering
University of Pittsburgh
Pittsburgh, PA 15261

g
=

o |

Submitted to:

Air Force Office of Scientific Research
Bolling Air Force Base, Wshington, DC

4

K

Contract AFOSR-34-U366

LA

-
-

E; May 1986

-« .‘" \,'}-,‘.‘ Nl .)}.\-q.&:“'- \-.‘,,- .». .‘ S L. ,'-J.- ._L‘. B
ACACHLSY R CRER T ﬁtﬁﬁ}mh :,a.}‘u:i}“

Al . &(,’(\':v-\.-_ R PP T
Tt » e N e e g
ety R L T )



REPORT DOCUMENTATION PAGE
s REPORT SECURITY CLASSIFICATION 10. AESTAICTIVE MARKINGS

Unclassified

20 SECURITY CLASSIFICATION AUTHORITY 3. OISTRIGUTION/AVAILABILITY OF REPOART

Approved for public release
Distribution uniimited

4. PEAPORMING ORGANIZATICN REPOART NUMBEA(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

. OECLASEIFICATION/DOWNGRADING SCHEDULE

CECM- 2 AFOSR.TR- 86-2180 |
Ga NAME OF PERFORMING ORGANIZATION o OFFICE SYMBOL 78. NAME OF MONITORING ORGANIZATION T
N hnic Inst [ (11 applicadie) ‘. , ey J
nst. . v Y
Rensselaer Polytechnic . P S gla JZ?K Y
Ge. ADOARESS (City, Stais end ZIP Code) =~ 75. AODRESS (City, Stete and ZIP Code) o .ﬂ .\i_, =
Civil Engineering Department 9 . ﬁ; ' »
Troy, NY 12180 el as e “: JEC 1 11986
B 8a NAME OF FUNDING/SPONSOARING ]&. O';HCL::‘:Q‘OOL 9. PROCUREMENT INSTRUMENT lOGNTﬂ:’IgS?!ION NUMBER
ORGANIZATION (41 op»
AFOSR/NA N\O AFOSR-84-0366 A
Ss. ADORESS (City, State end ZIP Cods) 10. SOURCE OF FUNDING NOS.
Building 410 cnson, | rnomer | A | wenune

Bolling Air .Force Base, DC 20332

=] 11. TITLE (Inciude Security Clamificstion) Analytical & bxperi-

jzation of Damage Processes in | (//¢2 F 27> AR
-412. PRASONAL AUTHOA(S) Composite Laminates
George Dvorak and Norman Laws '
13 YYPER OF REPOA » 1130, TIME COVERED 14. OATE OF REPORT (Yr., Mo., Dey) 18. FAGE COUNT
smom  9/3N/848 +v59/29/85 May 198 48

COSATI CODES
GROUP SUB. GA.

18. SUBJECT TERMS (Confinue on reverse if necemary end identify by dlock number)
Composite materials, cracking, damage accumulation

A summary of results is presented on the subject of damaye development in metal and
polymer matrix composite laminates. The following technical developments are described:

Evaluation of crack densities, stiffness changes, and fiber stresses caused by cyclic
loading in three 6U61-0 Ag-B laminates, with 0g, (U/90)25, and (0/+45/90/0/+45/1/2
90)s layers, This problem is solved in an incremental way, with regard for
interaction between plastic deformation and matrix crack yrowth in individual plies.
Saturation damaye states are predicted at different levels of steady cyclic loading.
Good comparison is obtained with available experimental data,

i) Analysis of first ply failure in polymer matrix composites. The influence of ply
tnickness on strength is predicted in terms of flaw nucleation mechanisms.

OISTRISUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

cLassirigo/unLimteo B same as rer. O oTic usens O

{25 NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22¢. OFFICE SYMSOL
(Inciude Aree Code)

( iy , ) .
”’/‘-‘vr‘caz, /s"f/;uuﬂi- Noay USAE | 2¢y 7] 73 /Jﬁ




o —— e

loc] ified e ‘.r

SECURITY CLASSIFICA}

A

(iii) Analysis of distributed damaye caused in a composite ply by either transverse crack
or fiber breaks. Several methods, such as self-consistent estimates, shear lag
approximations, crack array models, and finite element analysis of cracks in an
embedded ply were em-ployed. It was found that these methods give very similar
predictions of stiffness reductions of plies and laminates, and that these
predictions are in good agreement with avaijlable experimental data.

- - ‘. - AN
CAERARONINL. . SLOARDSATER LS bl ey Pl

Ji
SECURITY CLABSIFICATION OF THIS PAGE .,

TS NI

..}

PR
.

e
PN NS




e
LAt

oI T TAAR AN RSOV |

TABLE OF

ABSTRACT. e e 8 e o & o o o & » @

INTRODUCTION' . L] L] L] . . . L] . L]

STATUS OF THE RESEARCH., . . . . .

2.1 Mechanics of Fatigue Uamage in
Composite Laminates. . . . . .

CONTENTS

e & & s o ° o o

Metal

2.2 Mechanics of First Ply Failure . . .
2.3 Distributed Uamage in a Ply. . . . .

SIGNIFICANT ACHIEVEMENTS., . . . .

ACKNOWLEDGEMENT . . . . . . . . &

LIST OF PUBLICATIONS., . . . . . .

LIST UF PROFESSIONAL PERSONNEL. .

REFERENCES. . . . L] . . * . . . L]

TABLE 1
FIGURES

»

_________

e e & ° o & & o s & & s ¢

ii

-

Matrix

Lt BTNt AN

\'\.\.

L

' ?‘},"Jﬁ

p———

.
~ N

1

3%

A ChCS




ABSTRACT

¢

N .

!' > A summary of results is presented on the subject of damage development in ;
b metal and polymer matrix composite laminates. The following technical )

developments are described:

2

i =y

el (i) Evaluation of crack densities, stiffness changes, and fiber stresses

5; caused by cyclic loading in three 6U61-0 Ag-B laminates, with Og,

(0/90)7s, and (0/:45/90/0/:45/—]2-90)S layers. This problem is -
gg solved in an incremental way, with regard for interaction between 2

plastic deformation and matrix crack growth in individual plies.

-

| =g

Saturation damage states are predicted at different levels of steady

Mok

cyclic loading. Good comparison is obtained with available experi-

mental datQJ

(ii) Analysis of first ply failure in polymer matrix composites. The
- influence of ply thickness on strength is predicted in terms of flaw \

nucleation mechanisms, 2o L 3

(iii) Analysis of distributed damaye caused in a composite ply by either

:ﬁ transverse cracks or fiber breaks. Several methods, such as self-

- consistent estimates, shear lag approximations, crack array models, i
;: and finite element analysis of cracks in an embedded ply were em-

?; ployed. It was found that these methods give very similar predic- E
;.":

tions of <tiffness reductions of plies and laminates, and that these

predictions are in good ayreement with available experimental data.
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1. INTRODUCTION

1
- |

This research project is conducted as a cooperative effort of two inves-

v P

tigators. Dr. George J. Dvorak is the Principal Investigator of the program E
at Rensselaer Polytechnic Institute, which is the primary contractor. Dr.
g Norman Laws is Principal Investigator of the part of the program subcontracted ,
from RPI to the University of Pittsburgh. f'

L

In the first year of this research program, major accomplishments were 1]

x

achieved in the following areas: !

ﬁ - mechanics of fatigue damage in metal matrix laminates (Dvorak) :,'

‘ - mechanics of first ply failure in polymer matrix laminates (Dvorak and Laws) ‘

‘f: - mechanics of distributed damage caused in a composite ply by either trans-

verse cracks or fiber breaks, and the effect of the damage on behavior of ’

i laminated plates (Laws and Dvorak). '

',

::‘ In addition, significant proygress has been made in analysis of damage )

caused by propaygation of cracks toward, across, and along ply interfaces in N

! polymer matrix systems. :

< The principal results are described in the sequel. ,Ti
~
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2,  STATUS OF THE RESEARCH

L J

2.1 Mechanics of Fatigue Damage in Metal Matrix Composite Laminates

ey
.- a =

Several years ago, Dvorak and Johnson [1] observed that B-A% laminates

may suffer a substantial (~ 50%) reduction of stiffness and strength during

t]
<

v |

cyclic loading well below the endurance limit. A similar effect was found

zg more recently by Johnson [2) in fibrous SiC-Af laminates and it is now
apparent that metal matrix systems reinforced by monolayers of large diameter —
= fibers are sensitive to fatigue damage when the matrix is subjected to cyclic E&E
N plastic straining during fatigue loading. It is not yet clear that similar g?j
damaye occurs in other MMC, e.g., those reinforced by yraphite, FP, or other ;i
23 fibers of very small diameter. In any case, this type of damage is caused by %?i
o
- low cycle fatigue cracks which can yrow in off-axis plies on planes parallel
i' to the fiber axis., Typically, many aligned slit cracks are found in each ply.
N They may propagate in the matrix, at the fiber-matrix interface, and, on
: occasion, a split fiber may be a part of such a crack. Figure 1 shows various
!l examples of these cracks in a (0/90/i45)S laminate, which were constructed
) from observations of actual crack systems described in [1, 3-5]. The rignt
&g part of this figure, section A-A', shows an in-plane view of a crack in the
!z 9U° ply. Since there are no well-defined boundaries between plies, the cracks
& extend in the ply thickness direction from one adjacent layer of fibers to
;5 another. For example, the crack in the Y0° ply of Figure 1, section AA',
vy

extends between the U° fibers and the +45° fibers. In each layer these cracks

grow in the direction of fiber axis, hence the crack planes have different

orientation in each layer. On the boundaries between layers the cracks inter-

. sect,




It should be emphasized that the type of damage shown in Figure 1 can 3

exist only when the matrix cracks do not propagate into the fibers, except for
infrequent splits and breaks. This is the case in 6U61-Ag matrix reinforced
by boron or SiC fibers, providing that the matrix is overaged, as-fabricated,
or in T4 temper. Results obtained on composites with hardened (T6) matrices
suygest that matrix cracks may break many fibers and as a result, the fatigue
strength of these composites is very low.

The damaye process shown in Figure 1 was modelled on the basis of the

following premises:

a) Cracks grow in a ply when the matrix experiences cyclic plastic
straining. Monotonic plastic straining does not cause damayge. When
the undamayed composite is loaded within its shakedown limit, i.e.,
where the matrix is strained elastically, no damaye takes place.

This was indicated by experiments in [1].

b) When, as a result of matrix cracking, the crack accommodation strain
replaces the cyclic plastic strain, the matrix or ply ligaments
between the cracks return to elastic state. If this happens in all
plies, the cracked composite reaches a shakedown state. Damage
accumulation stops. A saturation damage state is observed in
experiments.

Figure 2 shows an example of saturation damage states reached at differ-

ent levels of maximum cyclic stress Spax, fOr R = Spin/Smax = U.1, in B-A%
plate specimens. The change in the elastic modulus of the specimen, measured
at unloading from Spax, was used as an overall measure of damage in the plate.
Figyure 3 is a collection of experimental points, each representing a saturation
damage state. It also shows a comparison between the experimentally deter-
mined "damage 1imit" and the calculated shakedown limit of the composite plate
specimen,

Jn tne basis of these premises, we posed the problem to find crack

density in each plastically strained ply such that the composite laminate

reaches an elastic state under the applied cyclic load., This elastic state
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should be identical with the experimentally observed saturation damaye state

at the same load cycle.

The model of this damage process was developed from several components,
and in several steps. First, the actual loading problem was replaced by an
equivalent one. In an experiment each specimen is loaded in a certain
constant cyclic range, Spax-Spmin. Initially, the composite deforms
plastically, cracks start to grow after 50,000 cycles or so, then crackinyg and
plastic straining coexist until the saturation state is reached after %00,000
or more cycles. The equivalent problem was formulated in such a way that the
composite was first cycled to a steady state between Spax and Syin. Then, the
loading range was reduced to an elastic range containing Spin. Next, an
increment of l1oad was applied simultaneously with an increment in crack
density, and the composite was loaded by several plastic cycles to a new
steady state. This incremental process was repeated until the entire load
range, Spax-Smin was accommodated. The final damage states reached in both
the actual and equivalent loading problems should be identical. This can be
ascertained on the basis of fatigue experiments under variable load [1, 2]
which show that the stiffness loss in the saturation damage state depends only
on the final stress ranyge, and that the same stiffness loss can be reached
either at constant range, or when the range is expanded incrementally, as in
the equivalent problem.

To analyse the equivalent problem, we utilized both plasticity and damaye
analysis of laminated composite plates. The plasticity theory was developed
earlier by Dvorak and Bahei-E1-Din [6, 7], in stress space, and by Wung and
Uvorak [8] for strain space applications which arose in the present problem.

The self-consistent damage theory of cracked plies [9, 10], as well as a new

theory which takes into consideration cyclic plastic straining at cracks were

P=y
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utilized in damage analysis.

Results are shown in Figures 4 to 12, For simplicity, we use the
(0/90)S layup in this illustration. Fiygure 4 shows the initial relaxation
surfaces of the plies of the crossply laminate in the overall strain space

where the e33 is the laminate strain in 0° direction. Each relaxation surface

is described by an equation of the type [8]

_ 2 _ _1T 2
g=26 (e~-B) A CA (e-8)-x =0 (1)
m =~ -~ me ne -~ -~ .

where G is the matrix shear modulus, € is the overall strain vector (6x1), 8
m “~ -~

is the position of the current center of the surface in e space, A 1is the
~ me
elastic matrix strain concentration factor (6x6), which relates overall uniform
strain € and average of the elastic matrix strain e in a given ply;
N ~ne

e =A €, (2)
~ine mne =~

and C is a (6x6) constant matrix; « is the matrix yield stress in simple shear.
Now, when cracks are added, the concentration factors in the ligaments

between cracks are reduced, because a part of the overall strain is now taken

up by cracks. As a result, the Ame for the matrix within these ligaments are

also reduced, and tne surface (1) expands in the e space. Figure 5 shows an

example for the 9U° ply of our crossply laminate. The expansion of the

surface may take place only when the cracks are open, i.e., it affects only

the tension branch of the surtace in the 533 direction which coincides with

the crack opening strain. The crdack density is measured by a constant 8 de-

fined as B = Z2an, where Za is ply thickness (in mm), and n is the number of

cracks in the ply per 1 mm of ply length. At B8 = 1, the average distance

between the cracks is equal to 2a. Similarly expanded relaxation surfaces can

roer v
.)"111 .',
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be found for the U° piy.

When the laminate is loaded into the plastic region, the relaxation
surfaces are translated to contain the prescribed loading path. Figures 6-8
show these translations for undamaged laminate. Figure 8 indicates that
steady state response of the laminate can be reached after the second cycle of
loading., In general this is observed in both damaged and undamayged laminates
after few loading cycles.

In the modelling procedure, the actual loading - constant cyclic load -
was replaced by incremental cyclic loading which eventually attains the
amplitude applied in experiments. The composite laminate was first loaded to
the maximum stress of the actual cycle, then to the minimum stress, and the
incremental cyclic loading sequence was applied so that the minimum stress was
always included in the incremental cycle.

In the plasticity part of the damage analysis, the composite was first
brought to a steady state that is actually reached in experiments after sev-
eral cycles., Initjally, this was a shakedown state in an undamaged composite.
Next, an increment of load was applied, and at the same time an increment in
crack density was allowed in each ply that would be loaded plastically during
the new load cycle. A new shakedown state was found for this level of damage.
This incremental procedure was repeated until the entire prescribed load cycie
was absorbed. In the final saturation state the composite is in a shakedown
state, the plastic strains which were originally applied to the material are
accommodated by opening and closing of cracks.

Uuring the incremental loading process, the relaxation surfaces expand to
accommodate the loading path, and they also translate in such a way that the

path always coincides with the largest "diameter" of each surface. This is a

consequence of cyclic plastic straining to a steady state, which is performed
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; between crack increments. In other words, the composite experiences maximum

' I. possible amount of cyclic nlastic straining and it also contains a minimum
. amount of cracks which are necessary to reach a given saturation damage state.
I

Figures Y and 10 show these expanded surfaces at two levels of Spax.

This analysis was performed for three different B-A% laminate layups.

P §
(4

>

Figure 11 indicates the results obtained for 08 and (0/90)2 Taminates. The
S

1

Es
.

% loss of unloading elastic modulus in saturation damage state is plotted as

~ function of applied stress range. Experimental results reported in [1, 2] are
ﬁi shown for comparison., Figure 12 shows similar results for the laminate dis-
i cussed in connection with Figures 2 and 3. The experimental data in Fig. 12
- were taken from Figure 3.

;5 Finally, Figure 13 indicates the changes in 0° fiber stresses as a func-

tion of damaygye, which is represented by the magnitude of reduction of elastic
modulus in saturation damage state. The calculated maximum stress reached in
the 0° fibers is also shown in the figure for each laminate. We note that the

08 and (0/90)2 plates were from one batch of material, which was apparently
s

weaker, while the 15-layer plate was from another batch of stronger material.

The conclusion one can obtain from these data and theoretical predictions

o g g BRLIN

oL

is that the laminate endurance limit is reached when the fiber stresses in the

o
LJ

0° ply reach a value which is equal to cyclic fiber strength. bDamage has a

n": ',~'-

strong effect both on stiffness and strength of the laminates. These results

Y 2 ]
.

Y

will appear in complete form in the forthcominy Ph.D. dissertation by Mr. C.J.

RSP
"

Wung.

2.2 TIMechanics of First Ply Failure

In this study, the mechanics of crack initiation in an elastic fibrous

ply was explored. Cracks were assumed to initiate from a nucleus created by
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. localized fiber debonding and matrix cracking. Conditions for onset of :
ii unstable cracking from such nuclei were evaluated with regard to interaction —
ﬁg of cracks with adjacent plies of different elastic properties. It was found ?
o that cracks may propagate in two directions on planes which are parallel to Q
=t the fiber axis and perpendicular to the midplane of the ply. It was found 3
- that crack propagation in the direction of the fiber axis controls the E
iﬁ strength of thin plies, while cracking in the direction perpendicular to the Z
Eﬁ fiber axis determines the strength of thick plies. The theory relates ply
e thickness, crack geometry, and ply toughness to ply strength. It predicts a ¢
3; siynificant increase in strength with decreasing ply thickness in constrained %
- thin plies. The strength of thick plies was found to be constant, but it
E} could be reduced by preexisting damage. Strength of plies of intermediate .f
thickness, and of unconstrained thick plies was evaluated as well. ?
While the theory is applicable at any crack density, it was compared with
experiments performed at low crack densities. Figures 14 and 15 show compari-
sons of the theory with experimental data obtained for first ply failure in f
90° plies of different thicknesses. The theory predicts two different strength
curves. First, for thin plies one obtains the steep curves shown in the two ;
figures. The equation of this curve is ?
— 0 1/2
(022)cr = [4Grc(L)/m &1 Ap2al (3) 1
é
where (022)cr is the transverse ply strength, Gpc(L) is ply toughness for the .
case of crack propagation in the fiber direction, £1<l is a coefficient which
describes the reduction of crack energy caused by interaction of the crack
with an adjacent ply, Agg is the relevant component of the crack tensor ob-
tained in [10) and 2a is ply thicknes.. Second, for thick plies one obtains :
8 3
(]
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the prediction that the fracture stress is constant, and given by

— ' 0 172
(022)cr = [2G1c(T)/m A22 81c(T)] (4)

where Gic(T) is the ply toughness for a crack propagating in the direction
perpendicular to the fiber axis, and 81c(T) is the critical width of the
initial flaw,

In practice, Gic(T) and 81c(T) may not be known, and the strength of
thick plies must be measured experimentally. However, (4) predicts that it is
constant. If initial damage is present such that 25.(T) = 2a, then the
strength of thick plies is reduced to that given by (3), at large values of a.

A complete description of these results is given in [11, 12].

2.3 Vistributed Damage in a Ply

In our work on distributed damage in a ply, attention was focused on the
loss of stiffness of the laminate and on progressive cracking of the
transverse ply. As far as loss of stiffness is concerned, our aim has been to
analyze the problem for transverse cracks and to treat the problem without the
introduction of additional material parameters (as for example in the internal
variable approach). In particular we have developed the self-consistent model
[Y-11, 13-15] and this technique appears to be adequate in practice.

We have also compared the self-consistent model with the work of
Delameter, Herrmann and Barnett [16, 17]., These latter authors addressed some
problems associated with a periodic two-dimensional distribution of aliygned
cracks in an infinite solid. The gyeometry assumed by Uelameter, Herrimann and
Barnett has long-range order. On the other hand the self-consistent model
assumes a random distribution of cracks. Nevertheless it is possible to

compare the two approaches, It is significant that there is good agreement.
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In addition we have used shear lag theory to estimate the loss of stiff- t_
. ness of cracked laminates. However it must be emphasized that the original
23 version of shear lag as it applies to cross-ply laminates [18, 19] contains ;;
W numerous mistakes. In fact, some effort was required to provide a simple clear E%

basis for shear lag theory. Once the required framework had been established,

e o
-

it was possible to do the necessary stress analysis. Of course, it is well

er]

known that shear lag theory involves one additional constant. But it is

ACh ANy

possible to give an easy way of finding the shear lag parameter from existing -

[P
4

data. MWith this information one can easily calculate the shear lay prediciton

of the loss of stiffness. It is quite remarkable that all these methodologies

Bz

are in good agreement amongst themselves and with experiment. Thus from a -

-
-

practical point of view either the self-consistent or shear lag models are to o

be preferred because of their simplicity. :
i A further bonus in our analysis of the various models emerged when we com- P
3 pared shear lag theory with some finite element calculations. Indeed our anal- ?1
v ysis indicates that shear layg gives quite acceptable results for the stresses ;?
!! (and strains) except in the immediate vicinity of the crack surfaces. And this 5
. explains why shear lag yives a reasonable prediction for loss of stiffness. E{
Ei A significant achievement of the last year has been the formulation of a E‘
- good analytical model for progressive cracking in cross ply composite laminates. .
- In the first place the work of the two P.I's - described elsewhere -provides a Sf
:i simple approach to first ply failure. At the time of writing, this approach :
- has not been extended to handle progressive cracking. Accordingly an alterna- :
E; tive simple model for proyressive cracking was sought [20]. It turns out that i&
~, shear layg theory which must be the simplest possible model coupled with {
ii statistical fracture mechanics gives some particularly useful results. It is -
‘J pernaps important to emphasize that the proposed proyressive crackinyg model Ei
! 10 -3
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has little in common with the earlier models of Bailey and his co-workers [18,
19].

The work on damage propagation across and along ply interfaces nas been
éxtensive. The most comprehensive stress analysis of this sort of problem
has been undertaken by Erdogan and a succession of students [21, 22 and the re-
ferences contained therein]. As far as this project is concerned a major dif-
ficulty is due to the fact that the specific geometries which are encountered
in transverse ply cracking have not been reported in the literature. Further,
it is not possible to obtain from the publisned literature any comprehensive
results which are particularly relevant to cross-ply yraphite-epoxy laminates.
In order to provide the required computer algorithms, and thus an extensive
data base, a succession of problems of gradually increasing complexity has
been analyzed. For some model problems the results obtained have been in
complete agreement with published work. But for other, more difficult,
problems we have been unable to reproduce some of the published results. At
this time it is not possiblie to identify the difficulties with precision and
thus arrive at definitive answers. However, it can be mentioned that we have
attempted several problems using the analytical techniques developed by
Erdogan and his students [21, 22]. So far our attempts have been unsuccess-
ful. It is fair to summarize our current position by noting that we are
unable to get convergence of the recommended algorithms. The source of the
problem is not clear at the time of writing.

In order to yet some additional insight into these problems, we obtained
some finite element solutions of the model problems. The solutions were ob-
tained by a straightforward application of the standard ABAQUS code. This
choice was determined by the fact that we needed to use a well understood,

reliable program,

11
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Ubviously this problem area is under intense study. Future reports can

be expected to contain precise scientific assessments of the various issues.

By way of contrast, it is pleasing to be able to report good progress in

S s

the study of crack yrowth across the ply interface into an adjacent ply. This

process often causes fiber breaks in the next ply and contributes significantly

to ply damayge and to stiffness loss. To solve this problem, it was necessary

gg first to calcuate interaction energies and crack opening displacements for
} cracks perpendicular to fibers: Laws [23]. These results have been incorpo-
i; rated into stiffness change calculations [24]. In addition to the determin-
» ation of self-consistent models, we have also investigated the appropriate

Hashin-Shtrikman bounds [24]. As ever, the self-consistent model lies within
the bounds. Also some results for enerygy releases rates have been obtained.

We are also examining the possibility of modeling the crack extension

¥
2

across an interface with the help of discrete Uugdale-type zones.

A Finally, we discuss the work in progress on the effect of damage on the
EB behavior of laminated plates. Here we are concentrating on the modeling of
ll extensively damayed regions. The formulation of constitutive equations for

plies containiny extensive matrix damage has been completed, Also fiber

o damaye resulting in cracks perpendicular to the fiber has been analyzed. In
= addition, we have done some assessment of the propagation of damage in a

;; laminate. Initial damage zones (due to impact or projectiles) extending

a through the thickness of the laminate were considered. Un the basis of these
LY

- preliminary studies, it is clear that problems associated with the spread of
%E daimagye from extensively damayed regions are not easily solved. This is a

» major problem area in our continuing work,

12
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: 3. SIGNIFICANT ACHIEVEMENTS

3

Important technical results have been obtained in analysis of damage both

.
-5

in metal and polymer matrix composites. The results reported in Section 2.1

PN
2

above highlight the achievements in analysis of fatigue damage in fibrous

e

metal matrix systems. In this case the damage process is quite complex, not
only in terms of crack geometry, but also because of the interaction of
plastic deformation and cracking during cyclic loading. Modelling of the

" process was made possible by formulation of a different, equivalent probiem.

Ny

[

However, the most significant factor in the success of the procedure was that

e
¥ 3N

we set out to model the terminal state of damage, i.e., the saturation damage

state. No attempt was made to follow evolution of damage through the initial

g 'i}'):

accumulation stage of 500,000 cycles or so, which is of limited practical

significance but which involves complex deformation and cracking processes.

Damage processes in polymer matrix systems were analysed in several ways.

Y,
e~ T~ " | ewaswleas | ] UL BN R e el e s e S g F Lt g ".4

First, the analysis of first ply failure clarified the conditions which govern

nucleation and propagation of individual cracks in a polymer matrix fibrous

g! ply. These conditions are valid not only for the first crack, but also for
:; all subsequent cracks, providing that the local stresses actiny on the new
v crack nucleus are properly evaluated. Therefore, we are now in the position
f; to connect progressive cracking in a composite ply to material properties such
., as ply toughness, and ply elastic properties, to ply thickness, Taminate
E EE geometry, and to initial flaw size.
3 o Uur efforts in analysis of progressive crackiny of a fibrous ply have
Y
3 > produced additional technical achievements. As a part of this effort, we
-!\ E compared various crack array models in terms of their predictions of stiffness
3 reduction in a cracked ply. The self-consistent model [9, 10] was compared
S
v T 13
K
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with the two-dimensional periodic array results [16, 17] and also with
rederived shear lay model results [20]. In these comparisons we considered
the composite laminate yeometry shown in Figure 16. The longitudinal and
transverse Young's moduli for the unbroken plies are E2 and Et respectively.
Also E0 is the Young's modulus for the uncracked laminate (in the direction
of the fibers of the 0° plies).

A useful test of the self-consistent model can be obtained by comparison
with the work of UDelameter, Herrmann and Barnett [16, 17]. These authors con-
sider a two-dimensional periodic array of cracks in an isotropic solid and,
amongst other things, calculate the associated loss of stiffness. Our self-
consistent results given in (14 refer specifically to laminates with the
following lay-ups:

(U4/9U)s, (03/902)5, (02/903)5, (0/904)5.
[t is simple enough to extract the required reductions in stiffness from [17]
and compare the results with the self-consistent model, see Table 1. Whilst
the comparison is remarkably good, it is not decisive since Uelameter,
Herrmann and Barnett [17] only consider isotropic solids.

It is reassuring to have agreement between the self-consistent model and
the Uelameter, Herrmann, Barnett analysis, but it is surely more important to
compare the respective models with experiment. A major difficulty is the
sparsity of experimental evidence on the relationship between stiffness loss

and crack density. However, the effectiveness of the self-consistent model in

predicting the experimental results of Highsmith et al. [24] is shown in Figure

17. We note that Figure 17 also includes the prediction of shear layg theory.

It is useful to record that shear lag theory yives the following formla for

14
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P
the reduction in stiffness [20]
! . g
E _ t 2d)
. —E;_ (1* "DE L tanh —B—J .
“
\‘
g The parameter A is the so-called shear lag parameter, but for practical pur-
o poses is best handled in the form (Ad), which is dimensionless. For typical
§ composites 0.5 < Ad < 1.5. In fact for the (0, 903) E-glass epoxy laminates
- s
studied by Highsmith et al. [24], ad = 0.8.
i s o . .
- A significant achievement has been to use shear lag theory to predict
‘ progressive crack density as a function of applied loads [20]. Clearly such
fd an analysis must take into account initial stresses. Accordingly the model
< has been formulated and solved. The process of transverse cracking can be
" followed in several ways. In the first place it is easy to show that the
fpf
i applied stress at first ply failure (o P ) may be found in terms of the
a
critical eneryy release rate G and the other parameters from
-~ o
N
fof ADEGELG. 1/2  Ej R
I J3 = { b+d Et } - 'E—t' Ot
“w
- R . .
S where °t is the residual stress due to cool-down in the transverse ply. If we
&
are given the usual data then the preceding formula provides a relationship
y fpf . \ . fpf
- between ¢ » xand G . Thus given X and G we could predict ¢ . However,
a o o a
fpf
o at the present time it is more appealing to regard o P and G as ygiven, hence
hid a C
o
s we can determine A or, more usefully, (aAd).
As for subsequent cracking, a major complication arises because the
location of the next crack cannot be obtained by deterministic methods.
i Physically it is clear that, for a yiven cracked laminate, there is no way of
o determining the location of the next crack. Rather, we must proceed on a
"\
o 15
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statistical basis. Referring to Figure 18, suppose that in a laminate with
l. transverse crack density B, existing neighboring cracks are at A and B. Then .

the next crack to occur between A and B will occur at some location C. Thus

let p(y) be the appropriate probability density function for the site of the 3
l! next crack: 1in other words the probability that the next crack will appear
! ;
between locations y and (y + dy) is just p(y)dy. Thus if o (y) is the applied ;
a "
stress to cause the next crack to appear at location y, the expected value of ;
the applied stress to cause a laminate with crack density B to undergo _
additional cracking is ;
2h (S
E(a ) =/ ply)o (y)dy ,
a a
0

where )

E -1/2
0 !
caly) = (cgpf + Tt oﬁ) {tanh %L + tanh %-(%g - y) - tanh Aﬁ} y
3

Eo R

Ey % 3
hat
at
Mt
The choice of probability density function is crucial and unknown. One “J

extreme would be to assume the next crack to occur at the mid-point of the

seynent, thus giving

iC Y v v v

ply) = 8y - h) ,

where §(y) is the VDirac delta function. The other extreme would be to assume i

that all locations in the ligament are equally likely, yiving

1

p(Y) = 2h .
-
-
< -
16 ,
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But a more appealing hypothesis, based on simple fracture mechanics, would be
i. to assume that p(y) is proportional to the stress in the transverse ply:
~ ply) «a ct(y) .
» For tne (0/903) E-glass reinforced plastic laminates studied by
G s
Highsmith et al. {24], the data demands that
e
b
‘ Ad=0.8 L]
s

I
K L,

Comparison between theory and experiment is shown in Figure 19,

In addition we have used some of the extensive data compiled by Wang et

[ =3

al. reported in L25] for T3UU/934 graphite epoxy laminates results are shown

B in Figures 20 and 21.
| Bearing in mind that the above-mentioned shear lay theory must be the
ii simplest possible theory of transverse cracking, it is remarkable that the use
. of a statistical fracture mechanics approach is as accurate as indicated in
:? Figures 19, 2V and 21,
!! Turning now to the reduction in stiffness due to fiber breaks, it is in-

appropriate to yive here any details of the analysis. But in order to yive

:E any information it is necessary to identify the appropriate crack density a.
- Thus let N be the number of fiber breaks per unit volume and let a be the
i: radius of the resulting penny-shaped crack at the broken end, then
S: = 8Na3.

In order to determine the loss in stiffness due to fiber breaks, it was first
- essential to calculate the interaction eneryy for a penny-shaped crack in a
Ii transversely isotropic material. This was done in [23]. It was then reason-
:: ably straightforward to obtain the self-consistent model and the correspondiny
Bt
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N
Hashin-Shtrikman bounds etc. The loss in Young's modulus (EL) parallel to the
Il fibers (and perpendicular to the cracks) is shown in Figure 22, Likewise the

reduction in the longitudinal shear modulus is shown in Figure 23. We have
computed all the necessary physical parameters, including energy release
rates. The details are too involved to be reported here, but see Laws and
Uvorak (26).

At the present time we have a range of results for stress intensity
factors which have been obtained using ABAYUS. A sample is shown in Figure 24
where the normalized stress intensity factor for a single crack in a (U/9U)S
graphite-epoxy laminate is plotted as a function of (non-dimensional) crack
length, It is not possible to compare this solution with published work since
none of the published work refers to the problem in hand. To be more precise,
published work refers to laminates with constrained upper and lower surfaces
whereas the real problem which is needed here concerns free upper and lower
surfaces.

Clearly this subject is under intensive study. A complete analysis will

be forthcoming in future reports.

18
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h g8 =0.1 B = 0.3 8 =0.5
| SCM SCM SCM
DHB. DHB DMB
N
'\-, .
)Y (04. 90)s 98 93 89
@ 97 94 90
fa 94 85 78
=
ol 65
i (02’ 90,)s 92 77
91 77 64
‘E‘
B4
s (0, 904)5 90 70 53
85 66 54

Table 1: The predicted remaining ¥ of the initial stiffness at the indicated
crack densities according to the Delameter, Herrmann, Barnett [9)
analysis and the self-consistent model.
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